Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees.

Identifieur interne : 000129 ( Main/Exploration ); précédent : 000128; suivant : 000130

Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees.

Auteurs : Bram Beckers [Belgique] ; Michiel Op De Beeck [Belgique, Suède] ; Nele Weyens [Belgique] ; Wout Boerjan [Belgique] ; Jaco Vangronsveld [Belgique]

Source :

RBID : pubmed:28231859

Descripteurs français

English descriptors

Abstract

BACKGROUND

The plant microbiome represents one of the key determinants of plant health and productivity by providing a plethora of functional capacities such as access to low-abundance nutrients, suppression of phytopathogens, and resistance to biotic and/or abiotic stressors. However, a robust understanding of the structural composition of the bacterial microbiome present in different plant microenvironments and especially the relationship between below-ground and above-ground communities has remained elusive. In this work, we addressed hypotheses regarding microbiome niche differentiation and structural stability of the bacterial communities within different ecological plant niches.

METHODS

We sampled the rhizosphere soil, root, stem, and leaf endosphere of field-grown poplar trees (Populus tremula × Populus alba) and applied 16S rRNA amplicon pyrosequencing to unravel the bacterial communities associated with the different plant habitats.

RESULTS

We found that the structural variability of rhizosphere microbiomes in field-grown poplar trees (P. tremula × P. alba) is much lower than that of the endosphere microbiomes. Furthermore, our data not only confirm microbiome niche differentiation reports at the rhizosphere soil-root interface but also clearly show additional fine-tuning and adaptation of the endosphere microbiome in the stem and leaf compartment. Each plant compartment represents an unique ecological niche for the bacterial communities. Finally, we identified the core bacterial microbiome associated with the different ecological niches of Populus.

CONCLUSIONS

Understanding the complex host-microbe interactions of Populus could provide the basis for the exploitation of the eukaryote-prokaryote associations in phytoremediation applications, sustainable crop production (bio-energy efficiency), and/or the production of secondary metabolites.


DOI: 10.1186/s40168-017-0241-2
PubMed: 28231859
PubMed Central: PMC5324219


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees.</title>
<author>
<name sortKey="Beckers, Bram" sort="Beckers, Bram" uniqKey="Beckers B" first="Bram" last="Beckers">Bram Beckers</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Environmental Sciences, Hasselt University, Agoralaan building D, B-3590, Diepenbeek, Belgium. bram.beckers@uhasselt.be.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Centre for Environmental Sciences, Hasselt University, Agoralaan building D, B-3590, Diepenbeek</wicri:regionArea>
<wicri:noRegion>Diepenbeek</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Op De Beeck, Michiel" sort="Op De Beeck, Michiel" uniqKey="Op De Beeck M" first="Michiel" last="Op De Beeck">Michiel Op De Beeck</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Environmental Sciences, Hasselt University, Agoralaan building D, B-3590, Diepenbeek, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Centre for Environmental Sciences, Hasselt University, Agoralaan building D, B-3590, Diepenbeek</wicri:regionArea>
<wicri:noRegion>Diepenbeek</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Current address: Department of Biology, Lund University, Ecology Building, SE-22 362, Lund, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Current address: Department of Biology, Lund University, Ecology Building, SE-22 362, Lund</wicri:regionArea>
<wicri:noRegion>Lund</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Weyens, Nele" sort="Weyens, Nele" uniqKey="Weyens N" first="Nele" last="Weyens">Nele Weyens</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Environmental Sciences, Hasselt University, Agoralaan building D, B-3590, Diepenbeek, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Centre for Environmental Sciences, Hasselt University, Agoralaan building D, B-3590, Diepenbeek</wicri:regionArea>
<wicri:noRegion>Diepenbeek</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Boerjan, Wout" sort="Boerjan, Wout" uniqKey="Boerjan W" first="Wout" last="Boerjan">Wout Boerjan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Ghent, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Ghent</wicri:regionArea>
<wicri:noRegion>Ghent</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biotechnology and Bioinformatics, UGent, Technologiepark 927, B-9052, Ghent, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Department of Plant Biotechnology and Bioinformatics, UGent, Technologiepark 927, B-9052, Ghent</wicri:regionArea>
<wicri:noRegion>Ghent</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vangronsveld, Jaco" sort="Vangronsveld, Jaco" uniqKey="Vangronsveld J" first="Jaco" last="Vangronsveld">Jaco Vangronsveld</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Environmental Sciences, Hasselt University, Agoralaan building D, B-3590, Diepenbeek, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Centre for Environmental Sciences, Hasselt University, Agoralaan building D, B-3590, Diepenbeek</wicri:regionArea>
<wicri:noRegion>Diepenbeek</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28231859</idno>
<idno type="pmid">28231859</idno>
<idno type="doi">10.1186/s40168-017-0241-2</idno>
<idno type="pmc">PMC5324219</idno>
<idno type="wicri:Area/Main/Corpus">000143</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000143</idno>
<idno type="wicri:Area/Main/Curation">000143</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000143</idno>
<idno type="wicri:Area/Main/Exploration">000143</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees.</title>
<author>
<name sortKey="Beckers, Bram" sort="Beckers, Bram" uniqKey="Beckers B" first="Bram" last="Beckers">Bram Beckers</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Environmental Sciences, Hasselt University, Agoralaan building D, B-3590, Diepenbeek, Belgium. bram.beckers@uhasselt.be.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Centre for Environmental Sciences, Hasselt University, Agoralaan building D, B-3590, Diepenbeek</wicri:regionArea>
<wicri:noRegion>Diepenbeek</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Op De Beeck, Michiel" sort="Op De Beeck, Michiel" uniqKey="Op De Beeck M" first="Michiel" last="Op De Beeck">Michiel Op De Beeck</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Environmental Sciences, Hasselt University, Agoralaan building D, B-3590, Diepenbeek, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Centre for Environmental Sciences, Hasselt University, Agoralaan building D, B-3590, Diepenbeek</wicri:regionArea>
<wicri:noRegion>Diepenbeek</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Current address: Department of Biology, Lund University, Ecology Building, SE-22 362, Lund, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Current address: Department of Biology, Lund University, Ecology Building, SE-22 362, Lund</wicri:regionArea>
<wicri:noRegion>Lund</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Weyens, Nele" sort="Weyens, Nele" uniqKey="Weyens N" first="Nele" last="Weyens">Nele Weyens</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Environmental Sciences, Hasselt University, Agoralaan building D, B-3590, Diepenbeek, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Centre for Environmental Sciences, Hasselt University, Agoralaan building D, B-3590, Diepenbeek</wicri:regionArea>
<wicri:noRegion>Diepenbeek</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Boerjan, Wout" sort="Boerjan, Wout" uniqKey="Boerjan W" first="Wout" last="Boerjan">Wout Boerjan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Ghent, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Ghent</wicri:regionArea>
<wicri:noRegion>Ghent</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biotechnology and Bioinformatics, UGent, Technologiepark 927, B-9052, Ghent, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Department of Plant Biotechnology and Bioinformatics, UGent, Technologiepark 927, B-9052, Ghent</wicri:regionArea>
<wicri:noRegion>Ghent</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vangronsveld, Jaco" sort="Vangronsveld, Jaco" uniqKey="Vangronsveld J" first="Jaco" last="Vangronsveld">Jaco Vangronsveld</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Environmental Sciences, Hasselt University, Agoralaan building D, B-3590, Diepenbeek, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Centre for Environmental Sciences, Hasselt University, Agoralaan building D, B-3590, Diepenbeek</wicri:regionArea>
<wicri:noRegion>Diepenbeek</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Microbiome</title>
<idno type="eISSN">2049-2618</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacteria (classification)</term>
<term>Bacteria (isolation & purification)</term>
<term>Bacteria (metabolism)</term>
<term>Biodegradation, Environmental (MeSH)</term>
<term>High-Throughput Nucleotide Sequencing (MeSH)</term>
<term>Microbial Consortia (MeSH)</term>
<term>Microbiota (genetics)</term>
<term>Plant Leaves (microbiology)</term>
<term>Plant Roots (microbiology)</term>
<term>Populus (microbiology)</term>
<term>RNA, Ribosomal, 16S (MeSH)</term>
<term>Rhizosphere (MeSH)</term>
<term>Secondary Metabolism (MeSH)</term>
<term>Soil Microbiology (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN ribosomique 16S (MeSH)</term>
<term>Bactéries (classification)</term>
<term>Bactéries (isolement et purification)</term>
<term>Bactéries (métabolisme)</term>
<term>Consortiums microbiens (MeSH)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Feuilles de plante (microbiologie)</term>
<term>Microbiologie du sol (MeSH)</term>
<term>Microbiote (génétique)</term>
<term>Métabolisme secondaire (MeSH)</term>
<term>Populus (microbiologie)</term>
<term>Racines de plante (microbiologie)</term>
<term>Rhizosphère (MeSH)</term>
<term>Séquençage nucléotidique à haut débit (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>RNA, Ribosomal, 16S</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Microbiota</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Microbiote</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Bactéries</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Bactéries</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>High-Throughput Nucleotide Sequencing</term>
<term>Microbial Consortia</term>
<term>Rhizosphere</term>
<term>Secondary Metabolism</term>
<term>Soil Microbiology</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ARN ribosomique 16S</term>
<term>Bactéries</term>
<term>Consortiums microbiens</term>
<term>Dépollution biologique de l'environnement</term>
<term>Microbiologie du sol</term>
<term>Métabolisme secondaire</term>
<term>Rhizosphère</term>
<term>Séquençage nucléotidique à haut débit</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The plant microbiome represents one of the key determinants of plant health and productivity by providing a plethora of functional capacities such as access to low-abundance nutrients, suppression of phytopathogens, and resistance to biotic and/or abiotic stressors. However, a robust understanding of the structural composition of the bacterial microbiome present in different plant microenvironments and especially the relationship between below-ground and above-ground communities has remained elusive. In this work, we addressed hypotheses regarding microbiome niche differentiation and structural stability of the bacterial communities within different ecological plant niches.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>We sampled the rhizosphere soil, root, stem, and leaf endosphere of field-grown poplar trees (Populus tremula × Populus alba) and applied 16S rRNA amplicon pyrosequencing to unravel the bacterial communities associated with the different plant habitats.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We found that the structural variability of rhizosphere microbiomes in field-grown poplar trees (P. tremula × P. alba) is much lower than that of the endosphere microbiomes. Furthermore, our data not only confirm microbiome niche differentiation reports at the rhizosphere soil-root interface but also clearly show additional fine-tuning and adaptation of the endosphere microbiome in the stem and leaf compartment. Each plant compartment represents an unique ecological niche for the bacterial communities. Finally, we identified the core bacterial microbiome associated with the different ecological niches of Populus.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Understanding the complex host-microbe interactions of Populus could provide the basis for the exploitation of the eukaryote-prokaryote associations in phytoremediation applications, sustainable crop production (bio-energy efficiency), and/or the production of secondary metabolites.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28231859</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>07</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2049-2618</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>5</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>02</Month>
<Day>23</Day>
</PubDate>
</JournalIssue>
<Title>Microbiome</Title>
<ISOAbbreviation>Microbiome</ISOAbbreviation>
</Journal>
<ArticleTitle>Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees.</ArticleTitle>
<Pagination>
<MedlinePgn>25</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s40168-017-0241-2</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">The plant microbiome represents one of the key determinants of plant health and productivity by providing a plethora of functional capacities such as access to low-abundance nutrients, suppression of phytopathogens, and resistance to biotic and/or abiotic stressors. However, a robust understanding of the structural composition of the bacterial microbiome present in different plant microenvironments and especially the relationship between below-ground and above-ground communities has remained elusive. In this work, we addressed hypotheses regarding microbiome niche differentiation and structural stability of the bacterial communities within different ecological plant niches.</AbstractText>
<AbstractText Label="METHODS">We sampled the rhizosphere soil, root, stem, and leaf endosphere of field-grown poplar trees (Populus tremula × Populus alba) and applied 16S rRNA amplicon pyrosequencing to unravel the bacterial communities associated with the different plant habitats.</AbstractText>
<AbstractText Label="RESULTS">We found that the structural variability of rhizosphere microbiomes in field-grown poplar trees (P. tremula × P. alba) is much lower than that of the endosphere microbiomes. Furthermore, our data not only confirm microbiome niche differentiation reports at the rhizosphere soil-root interface but also clearly show additional fine-tuning and adaptation of the endosphere microbiome in the stem and leaf compartment. Each plant compartment represents an unique ecological niche for the bacterial communities. Finally, we identified the core bacterial microbiome associated with the different ecological niches of Populus.</AbstractText>
<AbstractText Label="CONCLUSIONS">Understanding the complex host-microbe interactions of Populus could provide the basis for the exploitation of the eukaryote-prokaryote associations in phytoremediation applications, sustainable crop production (bio-energy efficiency), and/or the production of secondary metabolites.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Beckers</LastName>
<ForeName>Bram</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Centre for Environmental Sciences, Hasselt University, Agoralaan building D, B-3590, Diepenbeek, Belgium. bram.beckers@uhasselt.be.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Op De Beeck</LastName>
<ForeName>Michiel</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Centre for Environmental Sciences, Hasselt University, Agoralaan building D, B-3590, Diepenbeek, Belgium.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Current address: Department of Biology, Lund University, Ecology Building, SE-22 362, Lund, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Weyens</LastName>
<ForeName>Nele</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Centre for Environmental Sciences, Hasselt University, Agoralaan building D, B-3590, Diepenbeek, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Boerjan</LastName>
<ForeName>Wout</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Ghent, Belgium.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Plant Biotechnology and Bioinformatics, UGent, Technologiepark 927, B-9052, Ghent, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vangronsveld</LastName>
<ForeName>Jaco</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Centre for Environmental Sciences, Hasselt University, Agoralaan building D, B-3590, Diepenbeek, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>02</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Microbiome</MedlineTA>
<NlmUniqueID>101615147</NlmUniqueID>
<ISSNLinking>2049-2618</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012336">RNA, Ribosomal, 16S</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="N">High-Throughput Nucleotide Sequencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059013" MajorTopicYN="N">Microbial Consortia</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064307" MajorTopicYN="Y">Microbiota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012336" MajorTopicYN="N">RNA, Ribosomal, 16S</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058441" MajorTopicYN="Y">Rhizosphere</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064210" MajorTopicYN="N">Secondary Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">16S rRNA amplicon pyrosequencing</Keyword>
<Keyword MajorTopicYN="Y">Bacterial microbiome</Keyword>
<Keyword MajorTopicYN="Y">Endosphere</Keyword>
<Keyword MajorTopicYN="Y">Microbiome niche differentiation</Keyword>
<Keyword MajorTopicYN="Y">Populus tremula × Populus alba</Keyword>
<Keyword MajorTopicYN="Y">Rhizosphere</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>10</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>02</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>2</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>2</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>7</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28231859</ArticleId>
<ArticleId IdType="doi">10.1186/s40168-017-0241-2</ArticleId>
<ArticleId IdType="pii">10.1186/s40168-017-0241-2</ArticleId>
<ArticleId IdType="pmc">PMC5324219</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>ISME J. 2009 Feb;3(2):168-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19005498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 May 13;7:650</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27242686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2009 Sep;6(9):639-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19668203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 May;198(3):765-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23432219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Aug 21;349(6250):860-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26184915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 May;77(10):3202-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21421777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Aug 2;488(7409):86-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22859206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2002 Aug;68(8):3795-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12147474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2009 Jun;27(6):506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19513047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 Sep 18;5:4950</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25232638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2010 Jul;12(7):1889-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20236171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Res Notes. 2016 Jul 26;9:365</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27456340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Oct;188(1):291-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20636324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:233-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Jul 12;7:12151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27402057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Feb;75(3):748-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19060168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Jan;209(2):798-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26467257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1970 Aug 14;169(3946):641-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4988062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2014 Jul 15;5(4):e01371-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25028427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Dec;188(4):916-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20854395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Jun;76(11):3675-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20363788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2014 Jun 04;5:148</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24926286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2001 May;67(5):2284-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11319113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2012 Dec;21(24):6134-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23017151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Feb;76(4):999-1007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20023089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Jun 13;486(7402):207-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22699609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2015 Mar 24;6(2):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25805735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2010 Sep;7(9):668-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20805793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Feb 12;7:150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26904020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2011 Apr;9(4):279-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21407244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Aug;17(8):478-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22564542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2008 Feb;63(2):169-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18199082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2013 Feb 26;4(2):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23443006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Feb;17(2):64-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22209522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2007;8(7):R143</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17659080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Aug 15;27(16):2194-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21700674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2014 Jun;27:30-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24863894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2004;42:271-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15283668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Nov;71(11):7245-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16269765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Anim Ecol. 2009 May;78(3):573-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19245379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Sep 08;7:1363</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27660624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2013 May 24;13:114</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23705801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 May;132(1):44-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 2004;49:71-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14651457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2013;64:807-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23373698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6548-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23576752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jun 15;474(7351):327-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21677749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>GM Crops Food. 2015 ;6(4):206-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26357840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2011 Mar;75(3):497-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21204872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Mar;23(6):1473-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23952067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2015 Mar 21;15:66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25880246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):2312-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26755604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 May 27;332(6033):1097-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21551032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2000 Sep;64(3):624-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10974129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Jul;23(13):3356-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24894495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Apr 9;304(5668):253-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15073369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2009 Dec;90(12):3566-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20120823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Dec 24;330(6012):1768-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21205662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Dec 17;528(7582):364-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26633631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):585-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24379374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Sep;77(17):5934-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21764952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2010 Mar;19 Suppl 1:32-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20331768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):845-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24379366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2013 Jun;31(6):533-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23707974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Mar 4;464(7285):59-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20203603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2006 May;56(2):167-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16629747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jun 16;9(6):e97629</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24933453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2008 Jan;63(1):84-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18081592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2014 Feb 04;4:3957</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24492458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2006 Jul 21;2(7):e92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16848637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2014 Apr 03;10(4):e1003531</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24699258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2014 Oct;46(10):1089-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25151358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007;35(21):7188-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17947321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16428-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19805315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2009 Oct;27(10):591-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19683353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2014 Apr;8(4):790-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24196324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2012 Dec;10(12):828-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23154261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):12115-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16880384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Apr;69(4):1875-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12676659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Aug 2;488(7409):91-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22859207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2013 Jun 25;14(6):209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23805896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jul;39(Web Server issue):W475-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21470960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2016 Apr;30:70-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26896588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 1999 Feb;1(1):9-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11207713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2011 Mar;35(2):299-323</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20796030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 May;76(9):3015-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20228096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Aug 26;309(5739):1387-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16123304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Oct 16;8(10):e76382</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24146861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2008 Dec;2(12):1221-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18754043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2008 Oct;16(10):463-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18789693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Dec;75(23):7537-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19801464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(2):e56329</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23457551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2010 Jan;12(1):118-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19725865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2007 Aug;1(4):283-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18043639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Feb 24;112(8):E911-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25605935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Nov;77(21):7611-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21890678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Feb 29;319(5867):1238-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18258860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Aug;75(16):5428-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19561189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Oct;184(2):449-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19703112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2009;63:541-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19575558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2009 Apr;68(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19243436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2015 May 13;17(5):603-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25974302</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Belgique</li>
<li>Suède</li>
</country>
</list>
<tree>
<country name="Belgique">
<noRegion>
<name sortKey="Beckers, Bram" sort="Beckers, Bram" uniqKey="Beckers B" first="Bram" last="Beckers">Bram Beckers</name>
</noRegion>
<name sortKey="Boerjan, Wout" sort="Boerjan, Wout" uniqKey="Boerjan W" first="Wout" last="Boerjan">Wout Boerjan</name>
<name sortKey="Boerjan, Wout" sort="Boerjan, Wout" uniqKey="Boerjan W" first="Wout" last="Boerjan">Wout Boerjan</name>
<name sortKey="Op De Beeck, Michiel" sort="Op De Beeck, Michiel" uniqKey="Op De Beeck M" first="Michiel" last="Op De Beeck">Michiel Op De Beeck</name>
<name sortKey="Vangronsveld, Jaco" sort="Vangronsveld, Jaco" uniqKey="Vangronsveld J" first="Jaco" last="Vangronsveld">Jaco Vangronsveld</name>
<name sortKey="Weyens, Nele" sort="Weyens, Nele" uniqKey="Weyens N" first="Nele" last="Weyens">Nele Weyens</name>
</country>
<country name="Suède">
<noRegion>
<name sortKey="Op De Beeck, Michiel" sort="Op De Beeck, Michiel" uniqKey="Op De Beeck M" first="Michiel" last="Op De Beeck">Michiel Op De Beeck</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000129 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000129 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28231859
   |texte=   Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28231859" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020